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A powerful and versatile variational principle, allowing the estimation of the
effective properties of nonlinear heterogeneous systems, has been introduced recently
by Ponte Castafieda (1992). The central idea is to express the effective energy-density
function of a given nonlinear composite in terms of an optimization problem
involving the effective energy-density functions of linear comparison composites
with similar microstructure. This permits the computation of bounds and estimates
for the effective properties of given classes of nonlinear heterogeneous systems
directly from well-known bounds and estimates for the effective properties of
corresponding classes of linear comparison composites. In this paper, we review the
variational principle and apply it to determine bounds and estimates for the effective
properties of certain classes of nonlinear composite dielectrics with homogeneous,
isotropic phases. Thus, nonlinear bounds of the Hashin—Shtrikman and Beran types
are obtained for composites with overall isotropy and prescribed volume fractions (of
the phases). While nonlinear (second-order) bounds of the Hashin—Shtrikman type
have been obtained previously, in different form, by other methods, the nonlinear
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532 P. Ponte Castarieda

(higher-order) Beran bounds are the first of their type. Finally, exact estimates are
also obtained for nonlinear composites with ‘sequentially layered’ microstructures.
These special composites, which have proved to be extremely useful in assessing the
optimality of bounds for linear systems, are also useful, although to a lesser extent,
in assessing the sharpness of the nonlinear bounds.

1. Introduction

This paper deals mainly with the development of methods for estimating and
bounding the effective properties of nonlinear heterogeneous systems. Although the
presentation of the analyses and results will be phrased in the context of nonlinear
electrostatics, the emphasis is not on determining the nonlinear dielectric constant of
any specific material system, but rather to develop methods that would be of general
application in connection with several of the physical and mechanical properties of
material systems. Thus, we could equally well have chosen to set our problem in the
context of nonlinear conductivity, magnetostatics or diffusion. More rudimentary
versions of the methods in this paper have also been applied by Ponte Castafieda
(1991 a, b) to more complex systems, such as nonlinearly viscous materials.

The study of the effective behaviour of heterogeneous systems is a classical
problem that has attracted the attention of numerous investigators in many different
fields. However, most of the efforts thus far have concentrated on the effective
behaviour of linear systems. In particular, the problem of estimating the effective
dielectric constant (or, analogously, the effective conductivity) of a linear dielectric
(or conductor) has been a central one. On the other hand, the study of nonlinear
heterogeneous systems had not received much attention until very recently, except
in some highly specialized areas, such as nonlinear optics. Some examples of
nonlinear material behaviour in the context of electrical-transport phenomena are
provided by dielectric breakdown, burning out of fuses and laser phenomena. Many
other examples could be given in the realm of electrical, and other physical and
mechanical properties of matter. In the next few paragraphs, I briefly review some
of the key relevant developments in the theory of linear heterogeneous systems, as
well as some of the more recent developments in the emerging nonlinear theories.

As is by now well known, the effective properties of most heterogeneous systems
are not characterized by a simple average of the properties of the constituent phases
weighted by their respective volume fractions, and in general involve dependence on
microstructural parameters other than the volume fractions. Thus a proper definition
of effective properties is required to have a well-founded theory. One possibility that
applies to a large number of systems, introduced by Hill (1963) and Hashin (1964)
in the context of elasticity, is to define these properties in terms of the effective, or
overall, energy of the heterogeneous system resulting from special classes of uniform
boundary conditions. According to this definition, different boundary conditions will
in general lead to different effective properties for the system. However, on physical
grounds, it is assumed that, as the size of the typical heterogeneity becomes small
compared to the size of the specimen under consideration, the heterogeneous
material behaves like a homogeneous material with effective properties that are
independent of the specific boundary conditions applied to the system.

This intuitive notion of effective properties has been made mathematically
rigorous by the field of homogenization, which deals with the study of the existence

Phil. Trans. R. Soc. Lond. A (1992)
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Properties of nonlinear heterogeneous systems 533

and uniqueness of such effective properties in the limit of vanishingly small
microstructure. Thus homogenization theory is concerned with the description of an
idealized material that corresponds to the limit of a sequence of heterogeneous
materials with two distinct length scales: one microscopic, {, corresponding to the
size of the typical heterogeneity, and one macroscopic, L, corresponding to the size
of the specimen of interest and the scale of variation of the boundary conditions and
forcing functions applied to the system. The effective behaviour of the homogenized
materials is then obtained by considering the limit of the behaviour of the sequence
of heterogeneous materials as the ratio of scales, € = I/L, tends to zero. 1 also refer
to this idealized limit material as a ‘composite’. Two standard references in the
context of periodic homogenization are provided by the monographs of Sanchez-
Palencia (1980) and Bensoussan et al. (1978).

Many different methods have been proposed in the literature to predict the
effective properties of linear heterogeneous systems, and they can generally be
classified into three different categories. The first class of methods consists in
identifying specific microstructures for which the effective properties can be
computed exactly (e.g. periodic microstructures). An alternative approach, which is
often more useful in practice (because the exact microstructure of most composite
materials is usually not known precisely), is to define classes of composites for which
the microstructure is only partially specified in terms of some known microstructural
parameters. The goal of this approach is then to determine the range of possible
behaviours for a given material class. Thus this approach seeks to characterize the
effective behaviour of classes of material systems by specifying optimal bounds (i.e.
bounds that are attainable by special members of the class) on the effective
properties of the system. A third approach consists in the postulation of approximate
models attempting to capture the essential features of the microstructure of a given
system, or class of systems.

Examples of the first approach are provided by the periodic computations of
McPhedran & McKenzie (1978), the composite-spheres agsemblage models of Hashin
& Shtrikman (1962) and the sequentially layered laminates, introduced by
Bruggeman (1935), and used more recently by Schulgasser (1976) and Milton (1986),
among others. Examples of the second approach are given by the bounds of Wiener
(1912), Hashin & Shtrikman (1962) and Beran (1965). The Haghin—Shtrikman
bounds have been extended and rederived in a number of fundamentally different
ways by several authors. Walpole (1966, 1969), Willis (1977), and Kohn & Milton
(1988) proposed extensions of the Hashin—Shtrikman variational principles to
include, in particular, anisotropic effective behaviour. Bergman (1978) made use of
analytic function theory to obtain an alternative derivation of the Hashin—
Shtrikman bounds. Tartar (1985) proposed yet a different method, developed
jointly with Murat (1978) (see also Murat & Tartar 1985), for bounding the effective
properties of anisotropic composites making use of the notions of compensated
compactness. Lurie & Cherkaev (1984, 1986) independently proposed closely related
methods, which also were designed to deal with anisotropic composites. A detailed
comparison between the different methods is given by Kohn & Milton (1986) and
Milton (1990). The more stringent bounds of Beran have also been given a simpler
form by Milton (1981) for the case of two-phase isotropic composites in terms of one
geometric parameter (additional to the volume fractions) containing third-order
statistical information. (The Hashin—Shtrikman bounds contain only up to second-
order information.) Finally, examples of the third approach are provided by the self-

Phil. Trans. R. Soc. Lond. A (1992)
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534 P. Ponte Castatieda

consistent and other effective-medium theories, also initiated by Bruggeman (1935),
and used more recently by numerous investigators (see Landauer 1978 ; Milton 1985).

For nonlinear heterogeneous systems, the number of investigations dealing with
effective behaviour is comparatively small. Thus, in the context of the definition of
effective properties, Willis (1986) has applied the approach of Hill (1963) to nonlinear
dielectrics, and Marcellini (1978) has extended the results of homogenization theory
to nonlinear media in the periodic context. On the other hand, the actual
computation of effective properties in the nonlinear context has involved for the
most part approximate methods that are generally problem-specific. For example,
Miksis (1983) obtained results for the effective properties of periodic arrays, and
random (in a self-consistent sense) distributions of nonlinear spherical inclusions in
a linear matrix. Other approximate methods have been proposed recently by Stroud
& Hui (1988) and Zeng et al. (1988) for weakly nonlinear materials. In terms of
bounding methods, Willis (1986) and Talbot & Willis (1985) have proposed
extensions of the Hashin—Shtrikman variational principles to nonlinear hetero-
geneous systems. Additionally, Talbot & Willis (1987) have used this method to
compute bounds for the effective properties of nonlinear heterogeneous dielectrics,
and compared them with the results of some self-consistent embedding procedures.

In this work, I apply variational principles (Ponte Castafieda 1992) to establish
bounds and exact estimates for the effective properties of nonlinear heterogeneous
systems with isotropic constituents. I begin, in the next section, by introducing the
definition of effective properties in terms of the classical principles of minimum
energy and minimum complementary energy. Additionally, I summarize the
variational principles of Ponte Castafieda (1992) (see Theorems 2.1 and 2.2). These
variational principles are designed to yield the effective properties of nonlinear
heterogeneous systems in terms of the effective properties of suitably optimized
linear heterogeneous systems. This procedure enables the translation of the large
number of results available for linear composites directly into corresponding
estimates for nonlinear composites. In §3, 1 use the variational principles (see
Corollaries 3.1 and 3.2) to determine rigorous bounds for the effective properties of
arbitrarily nonlinear heterogeneous dielectrics with prescribed volume fractions.
Thus I show that the so-called Weiner bounds for arbitrarily anisotropic composites,
which can be obtained directly from the classical minimum principles, can also be
recovered from the new variational principles. More interestingly, I also develop
sharper bounds for the class of isotropic nonlinear heterogeneous dielectrics by
making use of the corresponding Hashin—Shtrikman bounds for linear dielectrics,
and obtain even sharper bounds still for the class of two-phase, isotropic nonlinear
systems by applying the Beran bounds for linear systems to the new variational
principles. In §4, I introduce special microgeometries for which the effective
nonlinear properties can be computed exactly. The new variational principles also
play a central role in the derivation of these exact results (see Corollaries 4.1 and 4.2).
The special microgeometries correspond to sequentially laminated materials, which
have been found to yield the extremal properties of many classes of linear systems,
both isotropic and anisotropic, and hence have been used in the linear theories to
study the sharpness and optimality of bounds. Thus in §4, I also show that the
nonlinear Weiner bounds are sharp. More importantly, I find in §§4 and 5 that, at
least for two-phase systems, sequentially laminated nonlinear materials can be
constructed closely approximating the nonlinear isotropic bounds of the Hashin—
Shtrikman type obtained in §3. This suggests that, although the nonlinear bounds of

Phil. Trans. R. Soc. Lond. A (1992)
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Properties of nonlinear heterogeneous systems 535

§3 may not be optimal in general, they are probably not too far from the optimal
bounds (which, presumably, would be extremely difficult to determine precisely).

2. Effective properties
(a) Definition
I consider a heterogeneous dielectric occupying a region in space of unit volume €.
The nonlinear constitutive behaviour of the material may be characterized in terms
of an electric energy-density function, w(x, E), depending on the position vector x
and the electric field E(x), such that the electric displacement field D(x) is expressed
by
D(x) = 0gw(x, E), 2.1)
where 0y denotes differentiation with respect to E, assuming differentiability of w.
However, in the context of the present work, it will suffice to assume convexity and
continuity of w on E. In this event, 0 can still be given the interpretation of the
subdifferential of convex analysis (Ekeland & Temam 1974 ; §1.5). As stated in §1, I
further assume local isotropy, so that I can write

w(x, E) = ¢(x,F), (2.2)

where ¢: 2 x R—>R is continuous, convex and coercive (in a sense to be specified
later) in the magnitude of the electric field £. Here, R is the set of the extended real
numbers. Additionally, I assume that ¢ satisfies the conditions

p(x,B) =2 0Vx, H, ¢(x,0)=0Vx. (2.3)

It was shown by Hill (1963) (see also Hashin 1964 ; Willis 1986) that the effective
constitutive behaviour of the heterogeneous dielectric may be defined by a relation

analogous to (2.1), -
D= O W(E'), (2.4)

relating the spatial averages of the fields, D and E, through the effective energy-
function of the nonlinear dielectric, W(E). I emphasize that the effective behaviour
of the heterogeneous dielectric, as characterized by W(E), may in general be
anisotropic, even though the phases themselves are assumed to be isotropic.

In principle, W(E) may be determined by solving the electrostatic problem on £,
given by the restricted version of Faraday’s law

VX E =0, (2.5)
and Gauss’s law for a vanishing distribution of free charge
V-D =0, (2.6)

subject to a uniform boundary condition
@p=—E'xon0Q, (2.7)

where @ is the electrostatic potential and is such that E = —Ve(x) in £ (which is
equivalent to Faraday’s law). Note that boundary condition (2.7) ensures that the
average of the electric field is in fact E, in the sense that

E=J E(x)dz. (2.8)
Q

Phil. Trans. R. Soc. Lond. A (1992)
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536 P. Ponte Castafieda
On the other hand, the average displacement field is defined by the similar relation

D_=f D(x)dz. (2.9)
Q

Thus the effective energy of the heterogencous dielectric W(E) is computed by
evaluating the pertinent energy functional for the heterogeneous dielectric

W(E) = f w(x, E(x))de,
Q

at the actual electric field solving the electrostatic problem, as defined by (2.5) to
(2.7), for a given microstructure. The effective constitutive behaviour of the
heterogeneous material, in the form of a functional relation between E and D, then
follows from (2.4). However, due to the complexity of the microstructure of actual
materials, it is often impractical to solve the electrostatic problem. For this reason,
alternative variational formulations of the problem are helpful. There are two
standard (dual) variational formulations of the electrostatic problem : the minimum
energy and minimum complementary-energy principles. These will be used in the
next subsection to provide alternative descriptions of the effective energy functions
of the nonlinear heterogeneous dielectrics.

(b) Classical mintmum energy principles

The first standard variational principle is the minimum energy principle. This
variational principle, expressed in terms of the energy functional W, may be used to
obtain the following expression for the effective energy of the heterogeneous
dielectric, namely,

W(E) = min W(E), (2.10)
EecK
where K={E|E=—Vgp(x)in 2, and ¢ = —E"x on 00} (2.11)

is the set of admissible electric fields.

Note that to guarantee the existence of a minimizer of (2.10) certain conditions on
the growth of w (or @) as &' — co are needed. Thus I assume that w is coercive in the
sense that w— oo as B —oco. Additionally, I remark that strict convexity of w
guarantees uniqueness of the solution, and that convexity of w ensures the convexity
of W (see, for example, the Appendix of Ponte Castafieda & Willis 1988). Finally,
note that if the fields are smooth enough, statement (2.10) is equivalent to the
electrostatics problem, as given by (2.5) to (2.7). More generally, however, (2.10)
provides a weak statement of the electrostatics problem allowing the possibility of
discontinuous fields, such as those that would arise in materials with discontinuous
properties separated by sharp interfaces.

The second characterization of the effective constitutive behaviour of the
heterogeneous dielectric is obtainable from the effective complementary-energy
function for the dielectric, U. This energy function may be defined in terms of the
principle of minimum complementary energy via

U(D) = min U(D), (2.12)
DeS
where U(D) =J w*(x, D(x)) dx
Q

Phil. Trans. R. Soc. Lond. A (1992)
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Properties of nonlinear heterogeneous systems 537

is the complementary energy functional, expressed in terms of the Legendre—Fenchel
dual (convex polar) of the energy function w,

w*(x, D) = sup{E-D—w(x, E)}, (2.13)
E

and where S={D|V'-D=0in 2, and D-n= D-n on 3} C(2.14)

is the set of admissible electric displacement fields. Note that the first condition in
this set must be given a weak interpretation if the displacement field happens to be
discontinuous. Then, given the conditions implicit in (2.14), relation (2.12) is a weak
statement of (2.5). Further, if (2.8) is reinterpreted as a definition for the average
electric field, we have the following relation analogous to (2.4), namely,

E=0,0(D), (2.15)

where it now follows from (2.14) that D must satisfy the relation (2.9).
I emphasize, however, that the duality relation between the local energy functions

w and w* (recall that w is convex and continuous, and hence by Propositions 1.3.1
and I.4.1 of Ekeland & Temam (1974))

w(x, E) = sup{E-D—w*(x, D)}, (2.16)
D

does not necessarily carry over to the effective energy functions W and U (which is
also known to be convex). In fact, Willis (1989) has shown that, in general,

W(E) = U*(E). (2.17)

The reason for the inequality is related to the fact that definitions (2.10) for W and
(2.12) for U correspond to different boundary conditions on the heterogeneous
material (Dirichlet versus Neumann conditions), thus leading to generally distinct
effective energies.

However, as I mentioned in §1, it follows from the results of homogenization
theory that strict equality holds in the above relation for a composite (in the sense
of a heterogeneous material that is homogeneous in a large enough scale). In
particular, Marcellini (1978) has defined the effective properties of a nonlinear
composite with periodic microstructure in terms of relations analogous to (2.4) with
(2.10) (or, dually, (2.15) with (2.12)). In this context, the effective properties of the
composite are defined by the solution of the electrostatics problem over a unit cell of
the composite, with the uniform boundary conditions in (2.11) (or (2.14)) being
replaced by periodic conditions over the unit cell. One advantage of this formulation
is that equality then holds exactly in (2.17). Although either definition could be used
in the present work, I prefer the earlier definition of effective properties (i.e. (2.4)
with (2.10), or dually (2.15) with (2.12)), because it has fewer technical requirements
(since the limit as the size of the typical heterogeneity vanishes is never evaluated
explicitly).

Finally, I record here for later reference that (Ekeland & Temam 1974; §1.4.2),
under the hypotheses given by (2.2) and (2.3),

w*(x, D) = ¢*(x, D), (2.18)

where ¢* is the convex polar function (Legendre transform) of ¢, and D is the
magnitude of D.

Phil. Trans. R. Soc. Lond. A (1992)
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538 P. Ponte Castarieda

(¢) New variational principles

In this subsection, I discuss briefly the variational principles recently proposed by
Ponte Castafieda (1992), which will be used in the next sections to determine bounds
and estimates for the effective energy functions of nonlinear composites. These
variational principles have been shown to be equivalent to the standard variational
principles, discussed in the previous subsection, under appropriate hypothesis on the
energy-density function. Also, the variational principles, just like the classical
complementary-energy and Hashin—Shtrikman variational principles, are based on
the Legendre transformation; however, the transformation is carried out on a
suitably modified set of variables to achieve comparison with a linear heterogeneous
comparison material with effective energy that can be estimated by using the linear
theory. Depending on whether I start from the minimum energy or complementary-
energy formulation, I obtain two versions of essentially the same result. I begin by
considering the minimum energy formulation.

The new variational principle centres around a change of variables r = A(¥), with
h:R*—>R* (R* is the set of non-negative reals) given by A(¥) = E*. By composition
of ¢ with A~!, we obtain a function f: Q x R* — R*, such that

flx,r) = ¢(x, ) = w(x, E). (2.19)

We note that f has the same dependence on x as ¢ and w, and that it is continuous
and coercive (but not necessarily convex) in r. Also, from (2.3), f is a non-negative
function satisfying the condition that f(x,0) = 0Vx. Then, if I define the Legendre
transform (convex polar) of f by

J*(x,p) = sup{rp—f(x, 1)}, (2.20)
720
it follows that flx,r) = sup{rp—f*(x,p)}. (2.21)
p>0

Note that x is fixed in the above operations, and that the suprema are evaluated over
the sets of non-negative r and p, respectively (this follows from the fact that f is non-
negative and such that f(x,0) = 0; see the Appendix of Ponte Castafieda (1992)).
Also, the right-hand side of inequality (2.21) is the bipolar of f, which has the
geometric interpretation of the convex envelope of f, and hence the inequality.
Propositions 1.3.1 and 1.4.1 of Ekeland & Temam (1974) ensure that equality is
achieved in (2.21) if f is convex and continuous (in 7). Therefore, assuming that the
energy function w in (2.20) is such that f is convex (note that f convex implies that
w is convex), I obtain from (2.21) the following representation for the local energy-
density function of the nonlinear heterogeneous material, namely,

w(x, E) = sup {wy(x, E)—v(x, &)}, (2.22)
€20
where (from (2.20)) v(x, €y) = sup {wy(x, F)—w(x, E)}. (2.23)
E

In the above relations, p has been identified w1th 1€, and r with £2, in such a fashion
that wy(x, E) = je,(x) £* and v(x,¢,) = f*(x,3€,). Thus w, corresponds to the local
energy-density function of a linear, heterogeneous comparison material with
arbitrary (not necessarily constant) non-negative dielectric coefficient ¢,(x).

Phil. Trans. R. Soc. Lond. A (1992)
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The minimum energy formulation of the variational principle follows by making
use of the representation (2.22) in the classical minimum energy principle (2.10), and
interchanging the order of the infimum in (2.20) and the supremum in (2.22), which
is allowed by an appropriate version of the saddle point theorem. The details of the
proof are given in Ponte Castafieda (1992, §3.1), but the result is as follows.

Theorem 2.1. Let the local energy-density function w of a given mnonlinear
heterogeneous material with isotropic phases satisfy condition (2.19) with f a non-
negative, continuous, coercive and convex function of r = K2, further satisfying f(x,0) =
0Vx. Then, the effective energy function of the nonlinear heterogeneous material W is
determined by the variational principle

W(E) = sup {Wy(E)—V(e,)}, (2.24)
€(x) 20

where Vie,) = f v(X, €5(x)) d, (2.25)
Q

is the functional generated by the function v(x,e,), and where W, denotes the effective
energy function of a linear heterogeneous comparison material with local energy function
w,, such that
Wy(E) = minf wy(x, E) d. (2.26)
EcK JQ
I emphasize that the dielectric coefficient ¢,(x) of the comparison material in (2.24)
is an arbitrary non-negative function in some appropriate functional space, so that
(2.24) is indeed a variational statement. Later, however, I make use of piecewise
constant approximations of e¢,(x), leading to finite-dimensional optimization
problems for bounds and estimates on W.
The dual, or complementary-energy, formulation of the new variational principle
follows in a similar fashion from the change of variables s = h(D), where 4 is the same
as before. This change of variables induces (by composition) a function g: 2 x R* —

R* such that
g(x,s) = ¢*(x,D) = w*(x, D). (2.27)

Again, we note that g has the same dependence on x as ¢* and w*, and that it is
continuous and coercive in s. Similarly, it follows from (2.3) that ¢*, and therefore
g, are non-negative functions satisfying the condition that g(x,0) = ¢*(x,0) = 0Vx.
Then, if we define the concave polar of g by (see Van Tiel 1974, §7.14)

g*(x,Q) = inf{sq—g(x,s)}, (228)
520
it follows that g(x,s) < inf {sq—g.(x,9)}, (2.29)
q20

with equality if ¢ is concave. Then, assuming that the complementary energy
function w* of the nonlinear heterogeneous material is such that g in (2.27) is
concave, it follows from (2.29) that

w*(x, D) = inf {w¥(x, D) +v(x,€,)}, (2.30)

€20
where ¢ has been identified with (2¢,)™* and s with D?, such that wg(x,D)=
(1/2¢4(x))D? is the complementary-energy function of the linear, heterogeneous
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540 P. Ponte Castanieda
comparison material with arbitrary non-negative dielectric coefficient ¢,(x). Here,
v(x,€)) = —gx(x,1/2¢,), which can alternatively be expressed in the form
v(x, ) = sup {w*(x, D) —wi(x, D)}. (2.31)
D

We note that this latter result is consistent with definition (2.23) of v, as can be seen
by making use of (2.13) in the right-hand side of (2.31), and interchanging the
resulting suprema.

The complementary-energy form of the variational principle then follows by
letting w* in (2.12) take the form given by (2.30), and interchanging the order of the
infima. The final result may be stated (see Ponte Castafieda 1992, §3.2) in the
following form.

Theorem 2.2. Let the (convex) local complementary-energy function w* of a given
nonlinear heterogeneous material with isotropic phases satisfy condition (2.27) with g a
non-negative, continuous, coercive and concave function of s = D?, further satisfying
g(x,0) = 0Vx. Then, the effective complementary-energy function of the nonlinear
heterogeneous material U is given by

UD) = inf {Uy(D)+ V(e,y)}, (2.32)
€0(x) =0
where U,(D) = min J wi(x, D) dx (2.33)
DeS JQ

stands for the effective complementary-energy function of the linear comparison
composite, and the functional V is as described by (2.25).

In the above developments of the energy and complementary-energy formulations
of the variational principle, the respective hypotheses of convexity of f and concavity
of g were introduced independently of each other. 1t is natural to ask whether there
is any relation between these two hypotheses. Further, it is important to emphasize
that, without these hypotheses, equivalence between the classical minimum energy
and new variational principles would not hold. Both of these issues are addressed in
Ponte Castafieda (1992, §3.3), where it is proved that concavity of g implies
convexity of f, and thus that concavity of ¢ suffices to ensure the lack of a duality
gap between the two versions of the variational principle (2.24) and (2.32), when
applied to the same composite. Thus, in the developments to follow, I assume, unless
stated otherwise, that w is such that g in (2.27) is concave.

I conclude this section by considering the implications of the hypothesis of
concavity of g on the growth conditions on w. Recall that so far we have only
assumed explicitly that w is convex and coercive (w—> 00 as K — 00). Since concavity
of g implies convexity of f, it implies in turn that w > ak? (for some o > 0) as £ —
00. Thus a sensible growth condition may be that w(x, E) ~ E'*" (n > 1) as £ - o0
(i.e. w is stronger than, or as strong as, quadratic). Then, f is stronger than, or as
strong as, affine at infinity, which is consistent with convexity of f. On the other
hand, the above assumption for w implies that w*(x, D) ~ D¥*V" ag D o0, and
therefore g is weaker than, or as weak as, affine at infinity, which is consistent with
concavity of g. For a more detailed discussion of this point the reader is referred to
Ponte Castafieda (1992, §3.3), but in the developments to follow the above growth
conditions will be assumed implicitly. Other growth conditions are possible, but the
bounds/estimates that follow may need reinterpretation, if these are different. For
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Properties of nonlinear heterogeneous systems 541

instance, we could let n in the above conditions be such that 0 < n < 1. Then, the
suprema and infima in the above relations would have to be replaced by infima and
suprema, respectively. Further, the role of the bounds and estimates in the following
discussion on bounds will also have to be appropriately adjusted.

3. Bounds

This section is concerned with the determination of bounds and estimates for the
effective energy functions of classes of nonlinear heterogeneous dielectrics that are
defined by the specification of appropriate statistical information on their
microstructure, such as, for example, the volume fractions of their constituent
phases. The idea is to make use of corresponding bounds and estimates for linear
heterogeneous comparison materials in the context of the variational principles
discussed in the previous section. Although the prescriptions determined by this
approach can be applied to more general types of bounds and estimates, in this
section, we limit our attention to bounds of the Weiner, Hashin—Shtrikman and
Beran types.

In particular, we are interested in heterogeneous materials with » homogeneous
phases, characterized by the isotropic energy functions ¢ (r = 1,...,n), such that
the local energy function of the heterogeneous material w, as defined by (2.2), takes
the form

M=

wix, E) = X x7(x) ¢ (E), 3.1)

r

1

where ¥ (x) is the characteristic function of phase r (this function vanishes, unless
X is in phase r, in which case it equals unity). We further assume that the volume
fractions ¢ of the constituent phases are fixed. These are given by the relations

n
" = f ¥ (x)dwx, and are such that X ¢ = 1.
Q r=1
Additionally, we may, or may not, prescribe further information on the micro-
structure, such as overall isotropy. From hereon, I refer to the material characterized
by (3.1) as a nonlinear composite (even though the relation may also correspond to
a family of composites), and hence I assume that the scale of variation of the
characteristic functions is small enough.

Because of the approximations that need to be made in the application of the
variational principle (2.24) and its dual (2.32), most of the results of this section will
be in the form of lower bounds for W. However, corresponding ‘upper estimates’, or
rather estimates for the upper bounds, are also proposed. Thus §3a deals with the
Weiner lower bound and is concerned with generally anisotropic nonlinear composites
with isotropic phases in prescribed volume fractions. On the other hand, §§3b and c,
dealing with Hashin—Shtrikman and Beran lower bounds, respectively, are concerned
with nonlinear composites with isotropic phases in prescribed volume fractions,
which are additionally distributed in such a way that the composite depicts overall
isotropy. In addition, §3d addresses the difficulty in obtaining rigorous upper bounds
for W. More specifically, it is shown that, although the well-known Weiner upper
bounds are easily obtainable from the new variational principles, upper bounds of the
Hashin—Shtrikman and Beran varieties are much harder to determine; instead,
‘upper estimates’ of these types are proposed and computed.

We remark that the above choices for classes of bounds are given on account of
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542 P. Ponte Castareda

their simplicity, and to illustrate the general method. Other possibilities would
include application to the linear bounds and self-consistent estimates of Willis (1977)
for anisotropic composites with prescribed two-point correlation functions, and to
the bounds of Murat & Tartar (1985) and Lurie & Cherkaev (1984, 1986) for generally
anisotropic composites with prescribed volume fractions only (G-closures). This
latter class of bounds on the effective conductivity tensor are sharper than the
Weiner bounds, but would require, for implementation purposes, alternative
expression in the form of energy bounds, analogous to those determined by Kohn &
Lipton (1988) and Allaire & Kohn (1991) for linearly elastic systems. Before
proceeding with the determination of the bounds and estimates, I state the following
useful corollaries to Theorems 2.1 and 2.2.

Corollary 3.1. Let (3.1) characterize the local energy-density function of an n-phase
nonlinear composite, additionally satisfying the hypotheses of Theorem 2.1. Then, the
effective energy function W of the composite satisfies the inequality

W(E) > sup {WO(E>— > c(’)vm(es”)}, (3.2)

e((,r) >0 r=1

where W, denotes the effective energy function of a linear comparison composite with n
phases of dielectric constant € in volume fraction ¢, such that the dielectric coefficient
of the comparison composite is given by

n
6(x) = X x"(x) e,

r=1
and where the function v is obtained by specializing relation (2.23) to the rth phase.

Note that the supremum in (3.2) is evaluated over the set of constants ¢”(r =
1,...,m).

Proof. This result follows from expression (2.24) in Theorem 2.1 by restricting the
set of (arbitrarily variable) comparison dielectric coefficients ¢,(x) to the set of
piecewise constant fields, with a different dielectric constant over each nonlinear
phase of the composite (namely, ¢ over phase r). The inequality is a consequence
of the fact that the supremum over the set of piecewise constant fields is smaller than
the supremum over the original (larger) set of fields. Note that the linear comparison
composite has the same microstructure as the nonlinear composite, and that, in

particular, it is constituted by n phases of dielectric constants ¢ in volume fractions
¢,

Corollary 3.2. Let the appropriate dual version of (3.1) characterize the local
complementary-energy function w* of an n-phase nonlinear composite, additionally
satisfying the hypotheses of Theorem 2.2. Then, the effective complementary-energy
SJunction U satisfies .

(D) < inf {ﬁo(ﬁ)+ > c<f>v<f>(e(<;>)}, (3.3)
>0 r=1
where U, denotes the effective complementary-energy function of a linear comparison
composite with n phases of dielectric constant €{” in volume fraction ¢, such that the
dielectric coefficient of the comparison composite s given by

n
6o(X) = 2 X" (x)ef,
r=1
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and where the function v is obtained by specializing relation (2.31) (or (2.23)) to the
rth phase.

Proof. The derivation of this result is analogous to the derivation of the previous
result. In this case, we make use of expression (2.32) (Theorem 2.2) and of the fact
that the infimum over the set of piecewise fields is larger than the infimum over the
set of arbitrarily variable fields.

(@) Weiner lower bound

In this subsection, I make use of the lower bound of Weiner (1912) for linear,
anisotropic composites with prescribed volume fractions to generate a corresponding
bound for nonlinear, anisotropic composites. I refer to the resulting bound as the
nonlinear Weiner bound. I emphasize that, although the nonlinear Weiner bounds
may be obtained in exactly the same way as the corresponding linear bounds
(directly from the classical variational principles), here I make use of the alternative
variational principles of §2¢ for two reasons. First, the basic ideas in the derivation
of the Weiner lower bound via the new variational principles are essentially the same
as those to be used later in the derivation of the Hashin—Shtrikman and Beran
bounds, and thus it is useful to illustrate the general method in the simplest possible
case. Second, the resulting form of the Weiner lower bound for the case under
consideration (isotropic phases) is new, and simpler than (although equivalent to) the
alternative form resulting from direct application of the classical variational
principle.

The Weiner lower bound may be specified as a bound on the effective energy

functions of linear composites with dielectric constants €, e{?, ..., ™ in prescribed
P _ 0 €0 0
volume fractions ¢, ¢®, ..., ¢™ via the relation
- 1 n C(r) -1 _
Wy(E) =2 5| 2 ] £ (3.4)
0 2 em
r=1 "0

where W,(E) = 1(,E)-E is the effective energy function of linear composites with
effective dialectric tensors &, Note that beyond the volume fractions of the
constituent phases, nothing else is specified about the microstructure of the
composite, and that, in particular, the composite may be anisotropic.

The nonlinear Weiner lower bound for the effective energy functions W of the class
of nonlinear composites with prescribed volume fractions is obtained by applying
(3.2) of Corollary 3.1 to the set of nonlinear composites with prescribed volume
fractions, and combining this result with the lower bound (3.4) for the class of linear
comparison composites with prescribed volume fractions. Therefore,

- 1 n c(r) -1 _ n
W(E) = sup {—(Z —) Er—3% c(”v(”(eg’))}, (3.5)
&'>0 2\,5 6(()7) r=1
where, explicitly, v (e”) = sup {3eiPs? —d P (s)}. (3.6)
§>0

Clearly, the optimizations implicit in (3.5) and (3.6) are 2n in number, but this
number may be significantly reduced by means of the following identity, first utilized
by deBotton & Ponte Castafieda (1992) and proved in the Appendix, namely,

n c(r) -1 n
(z W) = inf{ ¥ e (1 —(u(’))z}, (3.7)
r=1€o 92) r=1
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544 P. Ponte Castavieda

where the infimum is over the set of variables o™ (r = 1,...,n), which are subject
to a zero-average constraint

Mo = 0.

E

W =

r=1

This identity, when applied to the nonlinear lower bound for W in (3.5), yields the
result

W(E) > sup {inf{ Y LM (1— w(”)2E2——v(”(e§,’))]}}, (3.8)
M0

wm r=1
w=0

which in turn leads to

W(E) > 1nf{ Y ¢ sup LM (1—w™)2E? —v(”(e(’))}} (3.9)

() e(r)>0
0=0
In this last step, I have made use of the fact that the argument of the nested
supremum and infimum is concave in the €{” (since the functions ™ are convex in
e{") and convex in the o™, and of the saddle point theorem to justify the interchange
of the supremum and infimum operations.
Then, finally, application of relation (2.22), specialized to each phase in the form

P(s) = = sup {ge”s* —v ()}, (3.10)

e>0

leads to the following result for the lower bound

W(E) > inf{ 3 MM (1 —w")IE)}. (3.11)
(um r=1
@=0

The form of this bound is much simpler than that given by (3.5) and (3.6), and
involves only a m-dimensional optimization, with one linear constraint. This
constraint can easily be embedded in the optimization by suitable relabelling of the
optimization variables. For instance, for the case of a two-phase composite, the
above bound reduces to

W(E) = inf {c® @D (|1 — cPw|E)+ @@ (|1 4+ cDVo| )}, (3.12)
where the optimization variable w is unconstrained.

Next, for completeness, note that an alternative expression for this lower bound
may be obtained dually from expression (3.3) of Corollary 3.2. In this event, I obtain
the following upper bound for the effective complementary-energy function U of the
nonlinear composite, namely,

~ 1/2 M
UD) < inf {-(E m)Dz—i- h) c(”v(”(e(’))} (3.13)
>0 2\,5 r=1
and thus U(D) < 3 P (¢pM)*(D), (3.14)
r=1

where I have used the result that

. 1
(p™)*(D) = inf {26(7) D2+v”>(e§’))}, (3.15)
0
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which follows from (2.18), together with the fact that the Legendre transform of the
energy function ¢ (or complementary-energy function) is given by result (2.30),
specialized to phase r. We remark that, not surprisingly, the alternative form for the
bound (3.14) is precisely the result that would be obtained by applying the classical
minimum complementary-energy principle directly to the nonlinear composite.
Then, by dualizing this last relation, and recalling relation (2.17), I obtain

W(E) > (E ¢ (p?) ) (). (3.16)
r=1

For a given composite, we know from the lack of a duality gap (see discussion at the
end of §2¢) between the two versions of the new variational principle that expressions
(3.11) and (3.16) for the lower bound for W must be equivalent. However, the latter
form involves n+ 1 Legendre transforms, which in general may be more difficult to
evaluate than the earlier equivalent prescription. For this reason, I prefer the earlier
prescription, and from hereon I denote the bound implied by (3.11) (or by (3.16)) as
Wy_, and refer to it as the Weiner lower bound.

(b) Hashin—Shtrikman lower bound

In this subsection, I apply the structure developed in the previous subsection to
obtain lower bounds of the Hashin—Shtrikman type for the class of nonlinear
isotropic composites with prescribed volume fractions.

We begin by noting that the effective dielectric tensor of a linear isotropic
heterogeneous material is isotropic (i.e. § = & I, where I'is the identity tensor in R,
with d = 2 or 3 representing the dimension of the space). Then, the Hashin—
Shtrikman (H-S) lower bound é_ for the effective dielectric constant &), satisfying
€, = €_, is given by the expression (see, for instance, Kohn & Milton 1988)

n

C(r) -1
E = | —(d— .

= (2 grriamne) Ve (317
where ¢_ = inf, {¢{”}. This result may be rewritten by means of the identity (3.7),
shifted by (d—1)e_, in the form

n
6 = inf{ Y PNl —w™)2+(d—1) e_(w(”)2]}. (3.18)
uly b

Next, we observe that the effective energy functions W of the class of nonlinear
composites with overall isotropy may be estimated once again from relation (3.2) of
Corollary 3.1, where W, now represents the effective energy functions of the class of
linear comparison composites with phases of dielectric constants ¢’ in prescribed
volume fractions ¢ . Further, the distribution of the phases in the hnear comparison
composite is such that the nonlinear composite must be isotropic; therefore, the
distribution of the phases in the corresponding linear comparison composite must
also be isotropic. I emphasize that, while not all microstructures that are isotropic
for linear composites are also isotropic in the nonlinear context (for example, whereas
a linear periodic composite with cubic symmetry is isotropic, the corresponding
nonlinear periodic composite is not necessarily isotropic), nonlinear isotropic
microstructures must also be isotropic in the linear context (since linear is a special
case of nonlinear). Thus it follows that a lower bound for the effective energy
functions of the class of linear, isotropic comparison composites is also a lower bound

Phil. Trans. R. Soc. Lond. A (1992)
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546 P. Ponte Castavieda

for the subclass of linear comparison composites with ‘nonlinearly isotropic’
microstructure.

Therefore, replacing W, in (3.2) by the lower bound specified by (3.18) induces a
lower bound for the class of nonlinear isotropic composites. The result is

W(E) > sup [inf{ % P BEP (1 -0+ (d—1)e_(0)?) B — v(’)(eg”)]}‘l

o> 0‘[3(: r=1

= inf{ sup { Y ORI+ (d—1)e_(07)?) E? —-v")(eg”)]}}, (3.19)
g)(r) e‘()r)>0 r=1

where, once again, I have made use of the saddle point theorem to interchange the

supremum and infimum operations. Then, making use of (3.10) and remarking that

the minimum ¢{” (i.e. ¢_) depends on the intensity of the applied electric field £, and

may occur in any given phase, I conclude that

W(E) > min [mf[ Y MM (1 —w®| E)

s (7) r=1
a7=0 r#S

+C(S)¢(S)I:A/l:(l—-a)(s))z-i-(d )(ig O (0)®) } ]U (3.20)

I refer to the bound implied by this relation as the H-S lower bound for nonlinear
isotropic composites with isotropic phases in prescribed volume fractions, and denote
it by Wys_. We remark that a dual version of this result, with very similar form, may
also be obtained from the complementary-energy version of the variational principle
(Corollary 3.2). Note further that for the special case of two-phase composites, the
nonlinear H-S lower bound reduces to

inf {cDPD(|1 —cPw| B)+ PP [1/[(1 4+ cPw)?+ (d— 1) cVw?] B}
Wrss(E) = min inf{cPPW [1/[(1—cPw)*+ (d— 1) cPw?]| B]+cP @ (|1 + cPw| BV}’
(3.21)

where the absolute minimum of the two infimum problems normally depends on E.

Note that lower bounds of the Hashin—Shtrikman type for nonlinear dielectrics
have been obtained earlier by Willis (1986), using the general method of Talbot &
Willis (1985). This method, which is a generalization of the Hashin—Shtrikman (1962)
variational principles for nonlinear problems, makes use of a linear homogeneous
comparison material (unlike the heterogeneous comparison material of the new
method) to obtain results that, at least in some cases, agree with the predictions for
the bounds obtained via the new method proposed in this work. According to the
work of Willis (1991), in a different physical context (nonlinear infinitesimal
elasticity), the key to recovering the bounds predicted by the new method from the
Talbot-Willis method centres around an optimal choice of the homogeneous
comparison material (in the Talbot—Willis method). Thus Willis finds that the
improvement in the bounds noted in Ponte Castafieda (1991a) (using essentially the
new method) with reference to the bounds determined by Ponte Castafieda & Willis
(1988) (using the Talbot-Willis method), for some special types of nonlinear
composite materials, was a consequence of a non-optimal choice for the comparison

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Properties of nonlinear heterogeneous systems 547

material in the earlier work. It is anticipated that analogous results will hold for
nonlinear dielectrics. However, I emphasize that the form of the bounds given in this
work is different (and simpler) from the form of the bounds given by Willis (1986) (see
also Talbot & Willis 1987). In particular, I find that, for the special case of two-phase
nonlinear composites, the bounds given in this work involve only one optimization,
whereas the bounds given by Willis (1986) involve, in general, two optimizations
(including the optimization of the homogeneous comparison material). Further
comparison between the two methods is given by Willis (1991) and by Ponte
Castafleda (1992), but one distinct advantage of the new method utilizing the linear
heterogeneous comparison material is that it can be used in conjunction with linear
bounds and estimates, other than Hashin—Shtrikman bounds, to yield corresponding
nonlinear bounds and estimates (assuming, of course, that such linear bounds and
estimates are available). As an illustration of this feature of the new method, in the
next subsection, I derive lower bounds of the Beran type for two-phase, nonlinear
isotropic composites. Later, in §5¢ we also give an application to self-consistent
estimates.
(¢) Beran lower bound

In the context of linear, isotropic dielectric composites, bounds that are more
restrictive than the Hashin—Shtrikman bounds, and contain additional micro-
structural information in the form of three-point correlation functions have been
proposed by Beran (1965). For the case of two-phase systems, Milton (1981) has
proposed a simple form of the Beran bounds that depends on the volume fraction of
the phases, and on only one additional geometric parameter (that can be obtained
from the three-point correlation functions). Milton’s form for the lower bound on the
effective dielectric constant € is given by

R 2 c(r) -1 .
€E_= (Ejl m) —(d—l)G_, (322)

which is identical in form to (3.17), except that é_ must be replaced by

2 €(r) -1
€_ = (E 'e(—r‘)“) .
r=1 -0

Thus this expression depends on the dielectric constants € and €, the volume
fractions ¢¥ and ¢®, and the third-order geometric parameters {V and {® = 1 —{®,
both lying in the interval [0, 1].

Substitution of this result into the lower bound approximation (3.2) of Corollary
3.1, and following a procedure very similar to that used for the Hashin—Shtrikman
bound (making use of identity (3.7) twice: once for expression (3.22) and again for
the expression of €_), we arrive at the following lower bound for the nonlinear energy
function, namely,

Wy_(E) = inf{cV gD (v/[(1 —cPw)?+ (d—1) cPEV?(1 — LDy E) + ...
W,y

+e¢PdD(/[(1 +cPw) 4 (d—1) VP wP(1 4+ {Dy)2 E)}y.  (3.23)

We remark that the corresponding nonlinear H-S lower bound (3.21) follows
immediately from this result by choosing either {& = 0 or {® = 1, whichever yields
the lowest value (note that the infimum problem over y becomes trivial in either
case). This is completely analogous to the corresponding result for linear two-phase

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

548 P. Ponte Castafieda

composites. Finally, note that a dual version of this result, with slightly simpler form
(involving only one optimization), may also be obtained by application of Corollary
3.2.

(d) Upper bounds and estimates

The determination of upper bounds for the effective energy functions W of classes
of nonlinear composites is intrinsically harder than the determination of the
corresponding lower bounds. This is because approximations of the type (3.2) clearly
do not work in this case; instead, we must resort to the exact versions of the
variational principles. As we see below, it is possible to make use of the exact version
of the variational principles to obtain the Weiner upper bound, but I was not able
to make use of the exact version of the variational principles to obtain upper bounds
of the Hashin—Shtrikman and Beran types. It is interesting to note that the method
of Talbot & Willis (1985) exhibits the same limitation in determining nonlinear H-S
upper bounds, if attention is restricted to linear comparison materials. Because of
this difficulty, I provide instead ‘upper estimates’, or rather lower estimates for the
upper bound, of the Hashin—Shtrikman and Beran types. The rationale behind this
is that, in practice, the bounds are often used as estimates for the behaviour of the
‘weakest’ and ‘strongest’ composite possible with the given microstructural in-
formation. In this less rigorous interpretation, it is probably as useful to have a lower
estimate for the ‘weakest’ material, as to have a lower estimate for the ‘strongest’
material, provided that the estimates are not too weak. In §§4 and 5, we pursue these
ideas further.

The derivation of the Weiner upper bound is made possible by the corresponding
upper bound for linear composites with arbitrarily variable dielectric coefficient
€,(x). This bound may be expressed in the form

Wy(E) < %(J €o(%) dx)E‘2, (3.24)
Q

where W, is the effective energy function of the linear composite. Then, application
of (3.24) to (2.24) of Theorem 2.1 leads to

W(E) < sup {%(Leo(x)dx>1?2——f v(x,eo(x))dx}
Q

€9(x) =0
[
=f sup{éeolﬂ —v(x,eo)}dx
Q6,20
= f $(x, £) d, (3.25)
Q
which, via (3.1), leads in turn to the nonlinear Weiner upper bound (WW +)
W(E) < X "¢ (E). (3.26)
r=1

This result may, of course, be obtained directly from the classical minimum energy
principle ; inclusion of the present alternative derivation in this paper is made only
to emphasize that the exact version of the variational principles of §2¢ also lead (at
least in principle, and sometimes in practice) to upper bounds. Finally, we remark
that a dual alternative expression analogous to expression (3.11) for the Weiner
lower bound is also possible, if use is made of Theorem 2.2 instead of Theorem 2.1.
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A similar approach may be attempted for the nonlinear H-S upper bound.
However, I was unable to obtain an explicit result analogous to (3.26). The reason
is essentially that the evaluation of the pertinent term involving e, = max, {€,(x)} in
the appropriate expression of the H-S upper bound for the linear isotropic
comparison composite with continuously varying microstructure is extremely
difficult. I do not pursue this point further, and proceed with the determination of
estimates for the H-S upper bound, or ‘upper estimates’. As discussed earlier, this
is accomplished by application of approximation (3.2) of Corollary 3.1 to the H-S
upper bounds for the linear comparison composite. The upper bound for the effective
energy function of the linear comparison composite may be given in terms of the
upper bound for its effective dielectric constant, namely,

N n c(r) -1
=5 pra=me) —0-ve (320
where ¢, = sup, {¢{"}.

It is evident that the procedure of §3b, utilizing the lower bound (3.17) for the
linear comparison composite to obtain a lower bound for the nonlinear composite,
may be repeated making use of (3.27) instead of (3.17) to obtain an ‘upper estimate’
for the nonlinear composite. The result is the same as expressions (3.20) and (3.21)
for the n-phase and two-phase nonlinear composites, respectively, with the difference
that the outermost minimum operations must now be replaced by maximum
operations. I denote this result by Wiy, and refer to it as the H-S ‘upper estimate’
for W. In §4, we see that Wyg, is not, in general, an upper bound for W. This is
accomplished by computing the exact effective energy function of a specific nonlinear
composite, and noting that it exceeds Wysg. .

Finally, note that the same comments that we have just made about the H-S
upper bounds also apply to the Beran upper bounds. Therefore, I provide here only
an ‘upper estimate’ of the Beran type. Such an estimate is made possible by Milton’s
expression for the upper bound of the effective dielectric constant of the linear
comparison composite, €., which is given by expression (3.22), but with é_ replaced
by .

= 2 L.
r=1
Then, the corresponding form for the ‘upper estimate’ (not in general an upper
bound, for the same reason as for the Hashin—Shtrikman upper estimate) of the class
of nonlinear isotropic composites with prescribed volume fractions and third-order
statistical information (in the form of {%) is given by

Wy (E) = inf{cDgD (v/[(1 —cPw)? + (d— 1) D¢V w?| ) +

o CDFD(V/[(1+cPw)2+ (d—1) VLR B)}.  (3.28)

This bound also reduces to the corresponding Hashin—Shtrikman ‘upper estimate’,
by letting either & = 0, or {® = 1, whichever yields the highest value.

4. Exact estimates

In the previous section, I made use of the variational principles of §2¢ (Theorems
2.1 and 2.2) to obtain bounds on the effective behaviour of nonlinear composites. I
first studied the case of generally anisotropic composites and discovered that the
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Figure 1. () A rank-I laminate and (b) a rank-II laminate.

well-known Weiner bounds for nonlinear composites could be recovered from these
variational principles. I then considered the special, but important, case of isotropic
composites, and was able to determine new lower bounds, but only ‘upper
estimates’, in general, for the effective energy functions of these nonlinear
composites, This was accomplished by making use of the Hashin—Shtrikman and
Beran bounds for linear, isotropic comparison materials, with the same distribution
of phases as the nonlinear composites, in the variational principles. The question
then arises as to the quality of the lower bounds, and also, as to whether the ‘upper
estimates’ could in fact be rigorous bounds. In this section, I attempt to answer these
and other related questions by analysing the effective properties of sequentially
laminated materials. This class of materials, although of little practical value, has
proved to be of great theoretical value in the study of linear composites. For
instance, in the particular case of two-phase linear dielectric composites, it has been
shown by Tartar (1985) and Lurie & Cherkaev (1984, 1986) that sequentially
laminated materials can be constructed attaining the corresponding linear Hashin—
Shtrikman bounds. Here, I attempt a similar study for nonlinear sequentially
laminated materials. I find that the variational principles of §2¢ are specially suited
to the study of this class of nonlinear materials.

A sequentially laminated material (or laminate, for short) is an iterative
construction obtained by layering laminated materials (which in turn have been
obtained from lower-order lamination procedures) with other laminated materials, or
directly with the homogeneous phases that make up the composite, in such a way as
to produce hierarchical microstructures of increasing complexity. The ‘rank’ of the
laminate refers to the number of layering operations required to reach the final
iterated microstructure. Thus, as shown in figure 1a, a rank-I (I use roman numerals
to denote rank) laminate is obtained by mixing layers of two homogeneous phases (1
and 2) to obtain a simple laminate with layering direction n,. A rank-1I laminate (see
figure 1b) is obtained by layering the rank-I laminate with a third phase (3), or
alternatively with one of the original phases (say 2), in a different layering direction
n,. In general, n; and n, can take on any orientation, but in figure 15 they are
depicted as being orthogonal. Higher rank laminates are obtained by iterating this
procedure (see Milton 1986). One important observation in connection with this
procedure is that the length scale of the embedded laminates is assumed to be small
compared with the length scale of the embedding laminates (for example, in figure 15,
07 < 6 <€ 1). This assumption derives from the fact that the effective properties of
simple laminates can be computed exactly, and hence, by treating the iterated
laminate as a simple laminate with the embedded laminate replaced by a
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homogeneous material with the effective properties of the embedded laminate, the
effective properties of the iterated laminate can also be computed exactly. An
equivalent way of stating this result is that, under the assumption of widely
separated length scales for the different layers composing the iterated laminate, the
fields will be essentially constant within each elemental layer, provided that the
boundary conditions applied to the laminate are uniform. This feature, greatly
simplifies the computation of effective properties, thereby making sequentially
laminated materials very useful constructions.

In this and in the next two paragraphs, I review some of the important results
concerning linear laminates. I first note that the effective energy function of a simple
laminate (which, as mentioned previously, can be computed exactly) lies within and
attains (for specific orientations of the applied fields) the Weiner bounds. Thus, at
least in the linear case, the Weiner bounds on the effective energy-function of
arbitrarily anisotropic linear composites are known to be sharp (i.e. they can be
attained by specific microstructures). In §4a, I demonstrate that the same result
holds for the nonlinear Weiner bounds.

In the context of two-phase linear dielectrics, it is known that only iterated
laminates of rank greater than, or equal to, the dimension of the underlying physical
space (d =2, or 3) can have isotropic properties. These isotropic laminates are
obtained by choosing the relative volume fractions and the layering directions of
each of the embedded laminates in such a way that the effective dielectric tensor of
the iterated laminate is isotropic, while the absolute volume fractions of the
constituent phases remain fixed. For details, the reader is referred to Tartar (1985),
where it is additionally demonstrated that the result of this calculation is independent
of the rank of the iterated laminate (as long as it is greater than d), and equal to the
corresponding Hashin—Shtrikman bounds. The lower bound is obtained by letting
the phase with the highest dielectric constant occupy one of the two phases in the
(innermost) rank-I laminate, and by choosing the other phase (with the lower
dielectric constant) to play the role of the homogeneous phase at each of the other
layering operations. This yields a composite material with the phase with the highest
dielectric constant serving as the inclusion phase, and the other phase acting as the
matrix phase (for a picture of this construction in two dimensions, let phase 3 be the
same as phase 2 in figure 1b). Intuitively, such a construction should produce a
material with a low effective dielectric constant. In fact, it yields a material with the
lowest possible dielectric constant since, as mentioned above, it attains the H-S
lower bound. Conversely, the upper bound for the effective dielectric constant is
obtained by exchanging the roles of the two phases in the above construction.

One source of potential concern in connection with sequentially laminated
materials is the fact that the resulting inclusions are ‘flat’, whereas in practice the
inclusions are often equi-axed. However, this concern can be easily dispelled by
noting that iterated laminates can be used to model arbitrarily close the properties
of any two-phase microstructure (Milton 1986). For instance, the so-called composite-
spheres (concentric-spheres) model of Hashin—Shtrikman (1962) (with inclusions of
spherical shape) possesses exactly the same effective properties as an isotropic
iterated laminate with the same volume fractions (i.e. they both saturate the
Hashin-Shtrikman bounds for isotropic microstructures). Similarly, Tartar (1985)
proposed a confocal ellipsoidal microstructure to demonstrate the optimality of the
anisotropic Hashin—Shtrikman bounds developed by Murat & Tartar (1985) and
Lurie & Cherkaev (1984, 1986). Thus, a one-to-one correspondence may be
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established between the confocal ellipsoidal and sequentially laminated micro-
structures in this case also. It may initially seem that the concentric spheres (or
confocal ellipsoids) microgeometry is to be preferred over the iterated laminate
construction, but in fact the sequentially laminated microgeometry has several
advantages over the composite-spheres microgeometry. First, the sequentially
laminated microstructure involves a finite number of length scales in contrast with
the composite-spheres microstructure which involves an infinite number of length
scales (because the composite spheres must be chosen to cover all sizes to fill space).
Second, the laminated microstructure, unlike the composite-spheres microstructure,
generalizes to other more complex systems such as elasticity, and to nonlinear
systems, as we see in §4b.

As discussed previously, the main advantage of sequentially laminated composites
is that, when subject to uniform boundary conditions, the fields are piecewise
constant within the composite (whether the phases in the composite are linear or
nonlinear), except in small boundary layer regions at the interfaces separating
laminates of different rank. However, the ‘widely separated length scales’ hypothesis
makes the effect of these boundary layer regions negligible on the effective behaviour
of the laminate. For example, the assumption that §; < d; <1, in the two-
dimensional microstructure of figure 156, leads to different constant fields in each of
the regions labelled 1, 2 and 3 (even if there are only two phases). For a rigorous
treatment of this issue in the linear case, the reader is referred to Tartar (1985).
Because of this feature of sequentially laminated materials, it is useful to state the
following corollaries of Theorems 2.1 and 2.2.

Corollary 4.1. Suppose that we have an n-phase nonlinear composite with local energy
Sfunction w characterized by (3.1), additionally satisfying the hypotheses of Theorem 2.1,
such that the distribution of fields within the composite is piecewise constant (with
perhaps different constants tn different portions of the same phase). We assume that the
distribution of fields is given by the characteristic functions ¥ (s = 1,...,m), such that,
Sfor example,

m
E(x) =3 )z(s)(x)E(s),
s=1
with each E® constant. In general, the characteristic functions Y and the characteristic
Sfunctions defining the microstructure of the composite ¥ (r =1,...,n) are different
(m = n). Then, the effective energy function of the nonlinear composite may be expressed
n the form
m
W(E) = sup {WO(E)— ) 6(”?)(”(638’)}, (4.1)
¥ >0 s=1
where W, is the effective energy function of a linear comparison composite with m phases
of dielectric constant €5 in volume fractions é®, such that the dielectric coefficient of the
comparison composite is given by

m
eo(x) = X ¥ (x)ef?,
§=1

and where the functions v are obtained by specializing relation (2.23) to the sth region.

For example, in the rank-II laminate of figure 15, the linear comparison composite
is made up of three phases, denoted 1, 2 and 3, even if the corresponding nonlinear
composite is made up of only two phases (nonlinear phases 2 and 3 are equal).
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Proof. This result is obtained directly from Theorem 2.1 by noticing that, because
the fields are piecewise constant with distribution given by characteristic functions
¥, the piecewise constant distribution of comparison dielectric coefficients (with the
same characteristic functions) is the exact solution for ¢y(x) in the variational
principle (2.24). To see this, note that, within a given phase (characterized by some
x7), if E is constant (say E®) over some subregion of the given phase (characterized
by ¥®) then the optimal ¢,(x) in relation (2.24) for the local energy function w is
constant over that subregion (say €{). Therefore the integrals in (2.24) may be
evaluated exactly, and expression (4.1) results.

Corollary 4.2. Suppose that we have an n-phase nonlinear composite with local
complementary-energy function w*, characterized by the dual version of (3.1), and
additionally satisfying the hypotheses of Theorem 2.2, such that the distribution of fields
within the composite is piecewise constant (with perhaps a different constant in different
portions of the same phase). We assume that the distribution of fields is given by the
characteristic functions ¥ (s = 1,...,m) (m = n), such that, for example,

D(x) = X ¥®(x)D®,

s

with D® constant. Then, the effective complementary-energy function of the nonlinear
composite may be expressed in the form

m

UD) = inf {UO(D_)+ hy 6(8)0(8)(6(()5))}, (4.2)
>0 s=1

where U, is the effective complementary-energy function of a linear comparison composite

with m phases of dielectric constant € in volume fractions ¢, such that the dielectric

coefficient of the comparison composite is given by

m
6o(x) = X X9 (x) e,
s=1

and where the functions v® are obtained by specializing relation (2.23) to the sth region.

Proof. The demonstration of this result is analogous to that of the previous result.

(a) Simple laminates

In this subsection, I determine the effective energy functions of simple (one
layering direction) nonlinear laminates by applying the well-known corresponding
results for linear laminates to the above corollaries of the variational principles of
§2c¢. This calculation has been discussed previously by Ponte Castafieda (1992) for
the case of two-phase (rank-I) laminates; here, I investigate n-phase laminates made
up of nonlinear isotropic phases with potentials ¢™ in volume fractions ¢,
distributed randomly in layers perpendicular to a fixed orientation n. The
corresponding linear comparison laminate with dielectric constants €f” in volume
fractions ¢™ has anisotropic effective dielectric tensor
n n (mM\—1
g = (E c(”eg’)) (I—n®n)+(§] W) n®n, (4.3)

r=1 r=1 €9

where n is the lamination direction, and ® denotes the tensor product of two vectors.
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Thus, according to (4.1), the effective energy function of the nonlinear laminate
may be computed from the relation

n
W(E) = sup {%(EO E)yE-Y c(’)v(’)(eg’))}, (4.4)
>0 r—1

where &, is given by (4.1), and where I have used the fact that the fields for a
laminated composite material (even if it is nonlinear), subject to uniform boundary
conditions, are constant within each phase (i.e. ¥ = ). Then, making use of the
identity (3.7), and interchanging the sup and the inf by invoking the appropriate
version of the saddle point theorem, I arrive at

n
W(E) = inf{ ¥ ™ sup {Le” [E’_z-(E'n)z-i—(l—w(’))z(E-"n)Z]—v"’(e},’))}}, (4.5)
o \r=1 >0
@=0

which by means of (3.10) finally reduces to

W(E) = ir(lf{ 5 PP [V/[E*—(E n)*+(1—0")E: ,,)2]]} : (4.6)

It is not difficult to see that the maximum value of W in the above expression is
obtained when E is perpendicular to n yielding the Weiner upper bound W,,, as
given by (3.26). Conversely, the minimum value of W is obtained whenever E is
parallel to n yielding the Weiner lower bound W,_, as given by (3.11).

This demonstrates that the Weiner bounds on the effective energy function are
sharp within the class of nonlinear anisotropic composite materials with prescribed
volume fractions, and that these bounds are attained by simple rank-I laminates.
Thus, for anisotropic composites, the linear and nonlinear theories are similar. As we
see in the next subsection, the same is not true for nonlinear isotropic composites.

(b) Iterated laminates

To motivate the study of nonlinear iterated laminates, I first consider the
corresponding linear problem in some detail. For the most part, we will restrict our
attention to the case of two-phase composites. It is well known that rank-d laminates
with orthogonal layering directions attain the isotropic Hashin—Shtrikman bounds
for the effective dielectric constant of two-phase materials (in d dimensions). For
example, a two-phase, orthogonal rank-II laminate in two dimensions is depicted
in figure 1b. We note that phase 1 occupies relative volume fraction ¢! in the
(embedded) rank-I laminate and overall volume fraction ¢V = ¢’¢!? in the composite,
where ¢! is the volume fraction occupied by the rank-I laminate within the rank-II
laminate. The rest of the composite is made up of phase 2 (we are letting phase 3 be
equal to phase 2 in figure 1b). Its effective dielectric tensor is obtained by first
computing the effective dielectric tensor of the embedded rank-I laminate with
layering orientation n,, and then using this result in the computation of the effective
dielectric tensor of the rank-II laminate with layering direction n, (where n, is
orthogonal to n,;). Thus the dielectric constants in the n, and n, (principal) directions
of the rank-II laminate are, respectively,

el =cTel+(1—c)e® and &Y = [eM(ED) 1+ (1 —c!) (@)1, (4.7)
where ] and €, are the effective dielectric constants of the rank-I laminate in the n,
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and n, directions. Then, the condition for isotropy is obtained by choosing ¢! (¢!! is
in turn given by ¢® = ¢’¢’?) such that &I = ! = & The result of this calculation for
the effective dielectric constant of the rank-II isotropic laminate is

2

c(r) -1
(3 ) e s

2
-1 €50 +€®

This result is in agreement with the H-S lower bound given by (3.17) for d = 2, if we
assume that eV > ¢®. Otherwise, the above expression would yield the corresponding
H-S upper bound. Thus, the isotropic laminate with the largest dielectric constant
as the inclusion phase (and the smallest as the matrix phase) leads to the lowest
effective dielectric constant for the composite, and wvice versa.

Clearly, this procedure generalizes to three dimensions by considering a rank-I1I
laminate, obtained by layering the rank-II laminate in volume fraction ¢!/ again
with phase 2 in direction n, (orthogonal to n, and n,). Then, the inclusion phase (1)
occupies volume fractions ¢/ and ¢/¢!! in the embedded rank-I and rank-IT laminates,
respectively, and volume fraction ¢ = c¢/¢’/¢/'! in the rank-IIT laminate. The
condition of isotropy in this case leads to two equations to be solved for ¢! and ¢!
Again, the result of this calculation is in agreement with the H-S bounds (3.17) and
(3.27). I emphasize that, within the class of linear, isotropic iterated laminates, there
exist a large (in fact, infinite) number of laminates of different ranks attaining the
H-S bounds. The rank-d laminates with orthogonal layering directions, discussed
above, are the simplest such composites.

The above discussion suggests that the same identification may be possible
between the nonlinear H-S bounds given in §3 and nonlinear rank-d laminates.
However, this identification fails even in the simplest non-trivial case (d = 2). To see
this, note that the effective energy function of the two-phase, nonlinear rank-II
laminate with the same microstructure as the corresponding linear, isotropic rank-
II laminate may be expressed in the form

WyE)= sup {WP(E)—cOvP(e?)— (¢! —cD)v® () — (1—c )o@ ()}, (4.9)

e((,l), 6((]2)7 e‘f)z) 20

where W (E) is the effective energy function of a three-phase, linear rank-IT
laminate (see figure 1b), with comparison dielectric constants €V, ¢{?, €{¥, and where
¢!’ has been specified previously. Note that W (E) is not, in general, isotropic (unless
e® = ), and therefore W, is also not isotropic. The reason in this case for the three
distinct dielectric constants for the linear comparison material, even though we are
dealing with a two-phase nonlinear material, is again that for the nonlinear rank-11
laminate the fields will be different constants in phase 2, depending on whether we
are dealing with the portion of phase 2 that is embedded within the rank-I laminate
(in volume fraction ¢! —¢®), or we are referring to the portion of phase 2 in the rank-
IT laminate that is not part of the rank-I laminate (the volume fraction of this
portion of phase 2 is 1 —¢!f). Thus to obtain an exact result for the effective energy
function of the nonlinear laminate, a three-dimensional optimization is required (see
Corollary 4.1).

On the other hand, if instead of distinguishing between the two portions of the
nonlinear phase 2 subject to different constant fields, and carrying out the
optimization over the three independent comparison dielectric constants, we carry
out the optimization over two independent variables €{", ¢{? (as suggested by (3.2) of
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Corollary 3.1), a lower bound approximation for the effective energy function of the
two-phase nonlinear laminate is obtained, namely,

Wo(E)= sup {W@(E)—cDvDO(eM)—(1—cD)v® ()}, (4.10)

e, e >0

where W{? (E) corresponds to the effective energy function of the two-phase, isotropic
linear rank-II laminate described at the beginning of this subsection (where the two
linear phases are made to correspond exactly to the two nonlinear phases). Note that
this result also follows directly from the exact result (4.9) by letting ¢ = €{?; the
inequality arising because the sup over the smaller set in (4.10) leads to a result that
is in general smaller than the exact result of (4.9) over the larger set.

However, more importantly, note that, as demonstrated at the beginning of this
subsection (see (4.8)), W (E) corresponds exactly to the Hashin-Shtrikman bounds
for two-phase, isotropic linear composites, and hence the right-hand side of
inequality (4.10) corresponds to the Hashin—Shtrikman bounds (and estimates) for
two-phase, isotropic nonlinear composites. Thus, in general, we do not have equality
between the nonlinear H-S bounds, and the nonlinear rank-IT laminates. These
observations apply also to the three-dimensional composites: in this case, as we will
see, the exact computation of the nonlinear rank-III laminate involves a four-
dimensional optimization, whereas the corresponding evaluation of the nonlinear
H-S bounds of §3 involve only a two-dimensional optimization.

Thus we have reached the important conclusion that, in general, the H-S bounds
(and estimates) of the previous section for two-phase nonlinear composites are not
attained by rank-d iterated laminates with the same microstructure as the
corresponding optimal linear laminates, and hence the nonlinear H-S bounds are
probably not sharp. In fact, as we have seen, the nonlinear rank-d iterated laminates
with the same microstructure as the corresponding optimal linear laminates are not
even isotropic in general. This motivates the question of whether rank-d iterated
laminates with different microstructures may be designed for overall isotropy in the
nonlinear context. In general, we expect that the answer to this question is negative
since it is known that d planes of symmetry are not sufficient to ensure overall
isotropy in d dimensions. However, in the balance of this section, I show that
nonlinear ‘isotropic’ rank-d (iterated) laminates may be constructed in some
restricted sense. I also compute their properties, and in §5 compare them with the
nonlinear H-S bounds and estimates of §3, for the special case of two-phase
composites, where one of the phases has either zero, or infinite dielectric constant.
The results for these extreme situations (we expect that the differences will be
proportional to the contrast between the phases) within the class of two-phase
nonlinear isotropic composites are expected to serve as a test of the conjecture that
the results for the ‘isotropic’ rank-d laminates are not far from the actual (unknown)
extremal effective properties (or optimal bounds) of two-phase nonlinear isotropic
composites.

To determine the effective energy functions of the ‘isotropic’ nonlinear laminates,
we first develop a simpler form for the effective energy functions of general nonlinear
iterated laminates (i.e. simpler than (4.9)). Thus, to compute the effective energy
function of nonlinear rank-d laminates (d = 2, 3), with layering directions n,, ..., n,,
we begin by specifying the result of §4a to the rank-I laminate depicted in figure 1a.
Denoting by ¢’ the volume fraction of phase 1 with potential ¢® in the rank-I
laminate, and noting that 1 —c¢’ is the corresponding volume fraction of phase 2 with
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potential ¢, we find that the effective energy function of the nonlinear, rank-I
laminate is given by

W(E) = inf {’¢D(sD)+(1—c) P (sP)}, (4.11)
ot
where @, = clo{® + (1 —c!) w{?, and where
sV =/ [B2— (E-ny)* + (1— 0B n,)?],
s® = /[B*—(E'm)* + (1= 0P)*(E-n,)*.

Next, we consider the rank-II laminate obtained by mixing layers of the rank-I
laminate with layers of a third phase characterized by energy function ¢®, in
relative (to the rank-II laminate) volume fractions ¢/f and 1 —¢’Z, respectively. The
new lamination direction n, is orthogonal to n;, as shown in figure 1b. Then, applying
Corollary 4.1 to the resulting microstructure (a three-phase material with constant
fields over each isotropic phase), we arrive, via (4.9) (with thus far arbitrary ¢!!), to
the following energy function for the nonlinear rank-II laminate in dimension d >
2, namely,

W,,(E) = inf  { IO (sD)+ (1 —cl) pP(sP) + (1 — 1) g (sD)},  (4.12)
w}l) @ }2)_, wsll) s (0521)
Wy=07r=0
where @;; = o) + (1 —c!)w¥®, and where
sV = \/[E_Z_(E"H)z_(E_'nz)g‘l'(l_wgl))z(E'n1)2+(1_w(lll))z(E'nz)z],
§® = \/[E*—(E'n))* = (E-ny)*+ (1= 0P )*(E n,)* + (1 —0f)*(E"n,)?],
$® = \/[E*—(E ny)* + (1 —0@)*(E" ny)?,

with ¢/¢! = ¢®. T emphasize that we cannot make use of Corollary 4.1 to treat the
rank-II laminate as a simple laminate made up of the rank-I laminate (with effective
energy function given by (4.11)) and phase 3, the reason being that the rank-I
laminate is anisotropic and Corollary 4.1 does not hold. Instead, we must treat the
rank-II laminate as a three-phase composite; in this case, we are assured of the
isotropy of all three phases and may take advantage of Corollary 4.1.

A corresponding result may be obtained for a two-phase, nonlinear rank-II
laminate by lettlng ¢® = ¢ in (4.12). As discussed previously, even in this case, the
result for W, is generally anlsotroplc but in two dimensions (d = 2) it may be used
to obtain an isotropic result, for each value of £, by an appropriate choice of ¢!! (not
the fixed choice that makes the corresponding linear rank-II laminate isotropic).
This choice is accomplished by requiring that ¢!/ (0 < ¢! < 1) and £, = E"n, satisfy
the relations determined by

Wy, Wiy
—L = d
Oy | prems-ie 0 an et

=0, (4.13)

where the derivative in the first relation is subject to the constraint B2+ E2% = E?,
and that in the second assumes that £ is fixed. These conditions follow by performing
a Taylor series expansion of (4.12) in ¢!/ and E,, and requiring that the expansion
yield the same result for any choice of ¢!! and E,. Physically, this corresponds to
selecting a microstructure (by choosmg ¢y — with fixed overall volume fractions of
the phases — for each value of & ensuring that W, is independent of the direction of
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558 P. Ponte Castatieda

E. Thus, the resulting energy function, Wi,, is isotropic. However, Wi, does not
correspond to a fixed microstructure, but rather to a family of (anisotropic)
microstructures : one for each value of applied electric field. Therefore, W, should be
thought of as the effective energy function of an approximation to the class of
nonlinear isotropic microstructures. From now on, for simplicity, I refer to the result
WH, defined by (4.12) together with (4.13), as the effective energy function of the
‘isotropic’ nonlinear laminate. Similar comments will apply for rank-IIT laminates
in three dimensions, which are discussed next.

The effective energy function of a nonlinear rank-III laminate is obtained by
computing the effective behaviour of a simple laminate made up of layers of the rank-
IT laminate (just discussed) and of layers of a fourth phase with energy function ¢®
in volume fractions ¢’/ and 1—c¢'*!, respectively. The new layering direction n, is
chosen to be orthogonal to both n, and n,. Then, the effective energy function of the
nonlinear rank-II1 laminate may again be obtained by means of Corollary 4.1 (in this
case, the fields are constant over each of the four phases), with the result that

VT]][[(E) — lnf {CIIICIICI¢(1)(S(1))+CIIICII(1_61)¢(2)(8(2))+
o, 2, 80088, s ol
Or=0rr=drrr=0

A (L =) O (P) 4 (L — 1) gD (sD)}, (4.14)

where @;;; = c'w®, + (1 —c)yw?,,
sV = /[F2— E2 B —E:+(1—w®PE2+(1— - E+ (1—w®))2 K2,
§P = /[B*—Ei—Ei—Ei+(1—0P®)?2E + (1 — oW )PE2+(1—lY,)2E?],
§w=x4E%—2—E§ +(1—0f) B+ (1—of))*E3),
s =/ [B— B+ (1—w®)E?],

and where I have made use of the notations £, = E-n, (i = 1,2, 3).

Once again, the effective energy function of a two-phase, nonlinear rank-III
laminate may be obtained by letting ¢@ = ¢® = ¢ in (4.14). Then, in three
dimensions (d = 3), expression (4.14) for the rank-III laminate may be used to obtain
an isotropic energy function by letting c¢//c¢!’¢! = ¢™¥; and choosing ¢!/ and ¢! (0 <
< 1), and B, B, B, with B} + E2+ E2 = K* such that the relations implicit in

E)I/’f/III aI/T/III =0 aI/T‘IIII _ 6)VT/HI

i ] 7 111
OBy lgrigirms-gr OBy |gopiipeepe de de

=0 (4.15)

are satisfied. The resulting isotropic energy function W?,,, corresponding to a
nonlinear ‘isotropic’ rank-III composite, may be used to model the behaviour of
nonlinear isotropic composites in three dimensions. In the next section, I compare
this and the previous results for the rank-IT laminates with the bounds and estimates
of §3b for isotropic nonlinear composites, with some special choices for their
constituent phases.

5. Application to two-phase composites

To illustrate the power of the methods described in the previous two sections for
determining bounds and estimates for the effective properties of nonlinear
composites, I investigate in this section two simple, but important, examples. They
both involve a nonlinear matrix with isotropic potential ¢® = ¢ (subject to the
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restrictions of Theorem 2.1), and an inclusion phase with either infinite dielectric
constant, or alternatively, with zero dielectric constant. In the first case, we have
that ¢ = 0if £ = 0, or $® = o0 otherwise; and in the second, we have that ¢V = 0
regardless of the value of £. Thus I compute bounds for these nonlinear composites
applying the results of §3, and compare them with exact estimates for ‘isotropic’
laminates based on the results of §4.

(a) The nonlinear material with perfectly conducting inclusions

The first observation is that the upper bounds for this class of composite materials,
corresponding to geometries with the unbounded dielectric material in the matrix
phase, are unbounded. Thus we concentrate our efforts in determining lower bounds
and minimal estimates for the effective properties of this class of nonlinear materials.

According to relation (3.12), the Weiner lower bound for this nonlinear material is

i b - _ _
Bven Y Wiy (E) = (1—c) p(E/(1—c)), (5.1)

where I have used the fact that w = (1—¢)™" solves the infimum problem in (3.12).
Here ¢ is the volume fraction of the perfectly conducting inclusions. The
corresponding H-S lower bound is obtained by specializing relation (3.21) and noting
that once again w = (1—c¢)™" solves the optimization problem. The result may be
written in the form

(5.2)

WHS_(E) = (1—c)¢(wlﬂ'—).

1—c¢

Note that for d > 1, Wys_ > Wy, and the H-S bound for isotropic materials is
sharper than the Weiner bound for generally anisotropic materials (which also holds,
in particular, for isotropic materials). Note that the above bounds hold for arbitrary
nonlinear matrix satisfying the growth conditions mentioned at the end of §2¢
(superquadratic growth for ¢). We note further that the above results for the H-S
bounds can also be obtained by the method of Talbot & Willis (1985), although the
specific results described above have apparently not yet appeared in the published
literature. Analogous results in nonlinear infinitesimal elasticity have been given by
Ponte Castafieda & Willis (1988) and improved by Ponte Castafieda (1991a, b). I do
not consider the Beran bounds in this section, because they require more geometric
information than the volume fractions of the phases.

Next, I obtain results for the nonlinear ‘isotropic’ laminates by considering the
two- and three-dimensional laminates separately. The effective energy function of
the two-dimensional ‘isotropic’ laminate is obtained directly from relations (4.12)
and (4.13) with ¢® = ¢® = ¢ and by noticing that v = 1 and w{) = 1 solve the
optimization problem in this case. This leads to the result that

L 11 _ _ E 2
Wi (E) = stat  stat {(CH_C)¢[(CI§—_C)E1]+(1_CII)¢[/[E%+(1—ZI’) ﬂ},

o<ell<1 B3 Eb-R?
(5.3)

where I have rewritten the isotropy conditions (4.13) in the form of stationary
optimization processes. In general, these optimizations will need to be carried out
numerically, but we will see in §5¢ that further simplification can be achieved for
special choices of ¢. Note also that a quadratic choice for ¢ leads to the exact H-S
lower bound for a two-phase, linear isotropic composite.
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560 P. Ponte Castarieda

The corresponding three-dimensional result for the effective energy function of the
nonlinear, isotropic rank-I11I laminate is obtained in a similar fashion from (4.14) and
(4.15), and is given by

~ . _ cIIICII B
Wi (E)=  stat stat {(cf”c”—c)gzs[(m)El]+

CII, CIII E17E2 C
o<c!, <1 BB+ E=F?

R LS e e s

(5.4)

This result can also be shown to reduce to the corresponding linear H-S lower bound
for a quadratic choice for ¢.

(b) The nonlinear material with perfectly insulating inclusions

In this case, note that the lower bounds will of necessity be trivial because the
choice of the perfect insulator as the matrix phase leads to perfectly insulating
effective behaviour for the composite. Thus I attempt to obtain upper bounds, and
maximal estimates for the effective energy function of this class of composite
material. The Weiner upper bound, corresponding to arbitrarily anisotropic
composites, is obtained from (3.26), which yields the result

Wy (E) = (1—c) p(E), (5.5)

where ¢ now stands for the volume of the perfectly insulating inclusions. The
Hashin—Shtrikman upper ‘estimate’ (not a rigorous bound) is obtained from (3.21)
with the min replaced by a max. The result is

~ _ d—1 _
Wys(E) = (1—C)¢<A/(m>E)~ (5.6)

Although, as already mentioned, we do not expect this result to yield an upper bound
in general, it does reduce to the well-known H-S upper bound in the case of a linear
matrix.

The exact estimate for the two-dimensional, nonlinear ‘isotropic’ laminate is
obtained from expressions (4.12) and (4.13) with ¢® = ¢® = ¢. In this case, the
result is not as explicit as the corresponding result in §5a, and takes the form

Wi, (E) = stat  stat inf{(c" —c) g(s®)+ (1—c") p(s®)}, (5.7)
osz”a E$+g§=1§2
where s® = (1+cllw,,) B,
§® = \{E24[1—(1—c)w, PEY.

Further simplification is available for special choices of ¢, as we see in §5¢. Also, this
result reduces to the H-S upper bound in the limit of linear behaviour for the matrix.
The result for the effective energy function of the three-dimensional, nonlinear

‘isotropic’ laminate is obtained analogously, with the result that

Wi, (E)= stat stat inf {(c"e" —c) p(s@)+

AL I E, E, Wl W11
o< MM <1 BN B E2=E?
cA (L= p(sP) + (1 =) p(s®)},  (5.8)
Phil. Trans. R. Soc. Lond. A (1992)
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Properties of nonlinear heterogeneous systems 561
where 8® = v/ {(1+c"w; )2 B2+ (1+c w2 B2,
s = VB +[1—(1—=c") o PR +(1+ Moy )PE3,
sW = V{E{+E}+[1—(1—c") o PE 3.

Again no further simplification of this result seems possible for general ¢, but for the
special case considered in the following subsection for pure-power behaviour for the
matrix, a simpler form of the result is available.

(c) Special results for pure-power materials

In this subsection, I specialize the results for the two special types of nonlinear
composites of §§5a and b by considering pure-power behaviour for the matrix
material. This type of behaviour for the matrix, characterized by the energy-density
function

PH) = (n+1)"1eEm*? 5.9)
(where n > 1 is the power and € is the nonlinear dielectric constant), has the
advantage that it yields the same type of behaviour for the isotropic composite
materials with perfectly conducting, or perfectly insulating, inclusions. Thus, for
these two types of isotropic composites, we have that

W(E) = (n—1)"'¢E"*, (5.10)

where € denotes the effective nonlinear dielectric constant of the composite. For the
anisotropic composites, the form of the effective energy will be different in general,
but at least the Weiner bounds will also be of the form (5.10). We can then
characterize the behaviour of the Weiner, Hashin—Shtrikman and ‘isotropic’
laminates for the class of composites studied in §§5a and b in terms of this effective
nonlinear dielectric constant, appropriately normalized by the dielectric constant of
the matrix material (i.e. €/¢).

The results for the bounds and estimates of two-dimensional composites are not
essentially different from the results for three-dimensional composites. For this
reason, I only present results here for the three-dimensional composites. I begin by
depicting the results for the Weiner lower bound, the H-S lower bound and the
‘isotropic’ laminate estimate, as given by relations (5.1), (5.2) and (5.4), respectively,
for the nonlinear material with perfectly conducting inclusions. These results,
expressed in terms of the effective nonlinear dielectric constant, are given respectively

b
Y Ew_/e=(1—c)™.

€us /€ = (142c)"V12/(1—c)m,

(n+1)/(n-1)
6’—6”= sup {(1—y)2"“"‘1’+(——2_y> B [(xy—c)“/("_l)

" (5.11)

z,Y
0<z,y<1
rYy=c

9 — g\ D/ (1) -2
x( ) +l(1-2) y]m/m—”]} . J

X

Note that the expressions for the bounds are remarkably simple. On the other hand,
the expression for the exact estimate for the ‘isotropic’ laminate involves a two-
dimensional optimization, which must be solved numerically. It is interesting to note
that (&,,,/€)"" > (1—8c+12¢f — 6¢5 + ¢2)7# as n— 00, which is different from, but close
t0, (€gs_/€)Y™ in the limit as n > 00.

Phil. Trans. B. Soc. Lond. A (1992)
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(e/&)"

0 02 04 06 08 100 02 04 06 08 10

c c
Figure 2. Plot of the effective nonlinear dielectric constant as a function of the volume fraction of
perfectly conducting inclusions for (a) a weakly nonlinear matrix (n = 3) and (b) a strongly
nonlinear matrix (n = 10).

The results of these computations for the effective dielectric constant of the
nonlinear ‘isotropic’ laminate as functions of the volume fraction ¢ of the perfectly
conducting inclusions for two values of n (3 and 10, corresponding to a weakly
nonlinear and a strongly nonlinear material, respectively) are given in figure 2a and
b (they are denoted by L). In these plots, we have also included for comparison the
results for the bounds (W and H-S), as well as self-consistent (S—C) estimates
obtained in the same way as the nonlinear H-S bounds, but making use of the linear
self-consistent estimate instead of the linear H-S bounds in relation (3.3). This self-
consistent result takes the form

Eso/€ = (1—c) (" D/2(1 —3¢)=(ntD)/2, (5.12)
SC

All of the above results are depicted in terms of the reciprocal of the effective
dielectric constant to an appropriate power for plotting convenience. Thus the lower
bounds appear as upper bounds in these plots. By comparing the Weiner and H-S
bounds, we observe that the H-S bounds are significantly tighter than the Weiner
bounds. This is not surprising since the Weiner bounds must apply for generally
anisotropic materials, which is a larger class of materials than the class of isotropic
materials for which the H-S bounds must hold. Recall, however, that the Weiner
bounds were shown to be sharp within the class of arbitrarily anisotropic composites.
Comparing the H-S bounds with the exact estimates for the ‘isotropic’ laminates
(L), and observing that they are very close, even for the larger value of =, is
suggestive that the H-S bounds, although probably not optimal, are close to the
optimal bounds. Such optimal bounds would be expected to lie between the exact
estimates for the ‘isotropic’ laminates, which are approximations to actual
microstructures within the class of two-phase isotropic materials, and the H—S
bounds, which are rigorous bounds in this case. Finally, we note that the self-
consistent estimates lie below the bounds, as they should, and that they are close to
the bounds for small volume fractions of the perfectly conducting inclusions, but
diverge away from the bounds for moderate volume fractions reaching an early
percolation limit at ¢ = L.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Properties of nonlinear heterogeneous systems 563

€le

0 02 04 06 08 100 02 04 06 08 10

c c
Figure 3. Plot of the effective nonlinear dielectric constant as a function of the volume fraction of
perfectly insulating inclusions for () a weakly nonlinear matrix (n = 3) and (b) a strongly nonlinear
matrix (n = 10).

Next, we consider the corresponding results for the nonlinear material with
perfectly insulating inclusions in three space dimensions. These results for the Weiner
upper bound, the H-S ‘upper estimate’, the self-consistent estimate and the exact
estimate for the ‘isotropic’ laminate are given, respectively, by the relations

Ew/€ = (1—¢), ‘
Egse/€ = (1—¢)/(1+3c) "D/,

Bsofe = (L=§) ™12/ (1 =),

(5.13)
b _ up { [(1=2)y+ (1 —y) pI ™" }
pE [y —c) gD+ (1 =)y + (1 —y) prr D/ oD
zy=c

where p solves the quadratic equation

H1—y)/(1=2)]@2—2)p*— [y +2(1—y)lp+ (1 —2)(1—y) =0,

| xy 1—x
=GR

These results are plotted as functions of the volume fraction of inclusions ¢ in
figure 3a and b for two values of 7 (3 and 10). We observe that, as expected, the H-S
‘upper estimates’ for the isotropic composite lie well below the Weiner bounds
for the arbitrarily anisotropic composites. On the other hand, we find that the
exact estimates for the nonlinear ‘isotropic’ laminates (L) lie above the H-S
‘upper estimates’. This verifies our expectation, proposed in §4, that the H-S “upper
estimates’ are probably not in general upper bounds. This is because the ‘isotropic’
laminates correspond to (approximations of) specific microstructures within the class
of isotropic composite materials, and if the H-S estimates were rigorous bounds for
this class of composite materials, they would have to lie above all possible isotropic
microstructures, and, in particular, they would be expected to lie above the
‘isotropic’ laminates. Nevertheless, we find that the effective dielectric constants of
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the ‘isotropic’ laminates are not far from the H—S ‘upper estimates’. Thus, we
anticipate that the optimal upper bounds for this class of materials would probably
not be too distant from the ‘isotropic’ laminate results, and hence not too far from
the H-S ‘upper estimates’. Then, the H-S ‘upper estimates’, although not bounds,
would provide simple estimates for the extremal properties of this class of nonlinear
composites. We add that the self-consistent estimates agree with the H-S estimates
for low values of ¢, but they reach an early percolation limit at ¢ = 2.

Finally, we note that through the well-known connections between the H-S
bounds and the Maxwell-Garnett approximation, and between the self-consistent
and symmetric effective-medium estimates in the context of linear conductivity, we
could equally well refer to our nonlinear H-S bounds as nonlinear Maxwell-Garnett
estimates, and to the self-consistent estimates as nonlinear effective-medium
estimates.

6. Concluding remarks

To summarize, in this paper, I have made use of the variational principles
proposed by Ponte Castafieda (1992) (Theorems 2.1 and 2.2) to develop bounds and
estimates for the effective properties of nonlinear dielectrics. These variational
principles can generally be used in either one of two ways: they can be used
approximately to yield bounds for whole classes of microstructures (and for specific
microstructures), or they can be used exactly to determine the effective properties of
certain special microstructures. Prior work by the author, in different physical
contexts (Ponte Castaileda 1991a, b), has made use of the approximate versions of
the new variational principles to determine bounds for the effective properties of
nonlinear composites. The present work is the first to consider the exact use of the
variational principles in the computation of the effective properties of specific
microstructures.

In §3, which deals with the approximate use of the variational principles to obtain
bounds (Corollaries 3.1 and 3.2), I was able to recover the classical bounds of Weiner
for generally anisotropic nonlinear composites. More importantly, I also obtained
bounds of the Hashin—Shtrikman type for nonlinear isotropic composites by direct
implementation of the corresponding linear Hashin—Shtrikman bounds into the new
variational principles. Bounds of the Hashin—Shtrikman type for nonlinear dielectrics
have also been proposed by Willis (1986) and by Talbot & Willis (1985), starting from
an appropriate generalization of the Hashin—Shtrikman variational principles for
nonlinear problems. However, the new method has the distinct advantage that it is
not limited to bounds of the Hashin—Shtrikman type, and can be used to yield other
bounds (and estimates), such as higher-order bounds (and self-consistent estimates),
by direct application of the corresponding higher-order linear bounds (and estimates).
Thus I was able to obtain — for the first time — bounds of the Beran type for two-
phase, nonlinear isotropic composites. On the other hand, note that the method of
Talbot & Willis has the advantage that it applies to anisotropic behaviour for the
phases, whereas the new method, as developed thus far, applies only to isotropic
phases. However, generalizations of the new method to anisotropic behaviour are
certainly possible, and these will be explored elsewhere. One weakness of both
methods is that the bounds generated are only one-sided. Additionally, we note that
the final form of the expressions for the nonlinear Weiner and Hashin-Shtrikman
bounds and estimates obtained in this work is new and simpler than previously
available forms.
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In §§4 and 5, we studied the application of the exact versions of the new
variational principles (Corollaries 4.1 and 4.2) to compute exact estimates for the
effective properties of special classes of nonlinear composite materials. These special
materials, called sequentially laminated materials, are obtained as their name
implies by a sequence of lamination procedures, and have the advantage that their
effective behaviour can be controlled to a large extent by appropriate choices of the
lamination directions, and relative volume fractions of the phases within each
elemental layer. Thus, in particular, we show that a simple laminate leads to the
most anisotropic composite possible within the class of arbitrarily anisotropic
nonlinear composites with prescribed volume fractions, in the sense that the effective
energy of the simple laminate attains the Weiner bounds (for special choices of the
applied electric field). Analogous, but not quite as strong, results are obtained for the
class of isotropic composites, by considering ‘isotropic’ laminates (in the sense
described in §4b). In this case, we found in §5¢ that the ‘isotropic’ laminates do not
quite attain, but lie below, the nonlinear Hashin—Shtrikman lower bounds for
isotropic composites. On the other hand, we also verified that the Hashin—Shtrikman
‘upper estimates’ cannot be rigorous upper bounds in general (since they do not
encompass the nonlinear ‘isotropic’ laminates), but never the less they are probably
not far from the optimal upper bounds. It is expected that sequentially laminated
microstructures, which have been found in recent years to play an important role in
the linear theories, will also continue to play an important role in the development
of the nonlinear theories. They have many advantages over other standard types of
models because their effective properties can be computed exactly, and also because
they can be given generalizations in other fields, where other models may be too
difficult to apply.

This research was supported in part by the National Science Foundation/Materials Research
Laboratory program at the University of Pennsylvania under Grant no. 91-20668, and in
part by the Air Force Office of Scientific Research under Grant no. 91-0161.

Appendix

In this appendix, I give a simple proof of the identity (3.7) used throughout the
body of the paper. I begin by introducing a Lagrange multiplier to account for the
zero-average constraint on the optimization variables, ©™. Thus,

n n n
inf{ Y e (1— w‘”)z} = inf{ Y e (1—w®)?+sup {/\ z c"’w(”}} , (A1)
‘:’:()) r=1 o Lr=1 A r=1

and, by duality, we have
n n n
inf{ ¥ e (1 —w“))z} = sup {inf{ PIRARS ELED Y c‘”w"’}}. (A 2)
o \r=1 A Lo® =1 r=1
=0
The infimum over the o™ is satisfied by
W® = 1—2/2, (A 3)
which finally leads to

i n (r) (1) ("2 z ] A2 A A2 o \-1
fg{ZC e"(1-w )}—sgp{Zc { —46(7)}}—&;1){ _—4—255}=<E‘1'6"<B> .

r=1 r=1 r=1
(A4)

@=0
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